Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 8(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37707961

RESUMO

Factor-inhibiting HIF (FIH) is an asparagine hydroxylase that acts on hypoxia-inducible factors (HIFs) to control cellular adaptation to hypoxia. FIH is expressed in several tumor types, but its impact in tumor progression remains largely unexplored. We observed that FIH was expressed on human lung cancer tissue. Deletion of FIH in mouse and human lung cancer cells resulted in an increased glycolytic metabolism, consistent with increased HIF activity. FIH-deficient lung cancer cells exhibited decreased proliferation. Analysis of RNA-Seq data confirmed changes in the cell cycle and survival and revealed molecular pathways that were dysregulated in the absence of FIH, including the upregulation of angiomotin (Amot), a key component of the Hippo tumor suppressor pathway. We show that FIH-deficient tumors were characterized by higher immune infiltration of NK and T cells compared with FIH competent tumor cells. In vivo studies demonstrate that FIH deletion resulted in reduced tumor growth and metastatic capacity. Moreover, high FIH expression correlated with poor overall survival in non-small cell lung cancer (NSCLC). Our data unravel FIH as a therapeutic target for the treatment of lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Neoplasias Pulmonares/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Proteínas Repressoras/metabolismo , Hipóxia
2.
Front Immunol ; 13: 1014309, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505411

RESUMO

Vaccines against SARS-CoV-2 have alleviated infection rates, hospitalization and deaths associated with COVID-19. In order to monitor humoral immunity, several serology tests have been developed, but the recent emergence of variants of concern has revealed the need for assays that predict the neutralizing capacity of antibodies in a fast and adaptable manner. Sensitive and fast neutralization assays would allow a timely evaluation of immunity against emerging variants and support drug and vaccine discovery efforts. Here we describe a simple, fast, and cell-free multiplexed flow cytometry assay to interrogate the ability of antibodies to prevent the interaction of Angiotensin-converting enzyme 2 (ACE2) and the receptor binding domain (RBD) of the original Wuhan-1 SARS-CoV-2 strain and emerging variants simultaneously, as a surrogate neutralization assay. Using this method, we demonstrate that serum antibodies collected from representative individuals at different time-points during the pandemic present variable neutralizing activity against emerging variants, such as Omicron BA.1 and South African B.1.351. Importantly, antibodies present in samples collected during 2021, before the third dose of the vaccine was administered, do not confer complete neutralization against Omicron BA.1, as opposed to samples collected in 2022 which show significant neutralizing activity. The proposed approach has a comparable performance to other established surrogate methods such as cell-based assays using pseudotyped lentiviral particles expressing the spike of SARS-CoV-2, as demonstrated by the assessment of the blocking activity of therapeutic antibodies (i.e. Imdevimab) and serum samples. This method offers a scalable, cost effective and adaptable platform for the dynamic evaluation of antibody protection in affected populations against variants of SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Anticorpos Bloqueadores , Citometria de Fluxo , Vacinas contra COVID-19
3.
DNA Repair (Amst) ; 88: 102809, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32092641

RESUMO

Nucleophosmin (NPM1), an abundant, nucleolar protein with multiple functions affecting cell homeostasis, has also been recently involved in DNA damage repair. The roles of NPM1 in different repair pathways remain however to be elucidated. NPM1 has been described to interact with APE1 (apurinic apyrimidinic endonuclease 1), a key enzyme of the base excision repair (BER) pathway, which could reflect a direct participation of NPM1 in this route. To gain insight into the possible role(s) of NPM1 in BER, we have explored the interplay between the subnuclear localization of both APE1 and NPM1, the in vitro interaction they establish, the effect of binding to abasic DNA on APE1 conformation, and the modulation by NPM1 of APE1 binding and catalysis on DNA. We have found that, upon oxidative damage, NPM1 is released from nucleoli and locates on patches throughout the chromatin, perhaps co-localizing with APE1, and that this traffic could be mediated by phosphorylation of NPM1 on T199. NPM1 and APE1 form a complex in vitro, involving, apart from the core domain, at least part of the linker region of NPM1, whereas the C-terminal domain is dispensable for binding, which explains that an AML leukemia-related NPM1 mutant with an unfolded C-terminal domain can bind APE1. APE1 interaction with abasic DNA stabilizes APE1 structure, as based on thermal unfolding. Moreover, our data suggest that NPM1, maybe by keeping APE1 in an "open" conformation, favours specific recognition of abasic sites on DNA, competing with off-target associations. Therefore, NPM1 might participate in BER favouring APE1 target selection as well as turnover from incised abasic DNA.


Assuntos
Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Proteínas Nucleares/metabolismo , DNA/genética , DNA/metabolismo , Humanos , Nucleofosmina , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...